Publications

Synapse coordination

Electrical synapse molecular diversity revealed by proximity-based proteomic discovery.
Michel J.C.*, Martin E.A.*, Crow W.E., Kissinger J.S., Lukowicz-Bedford R.M., Horrocks M., Branon T.C., Ting A.Y., Miller A.C. BioRxiv, doi: 10.1101/2024.11.22.624763

* denotes equal contribution

Electrical synapse form and function

Electrical synapse structure requires distinct isoforms of a postsynaptic scaffold.
Michel J.C., Grivette M.B., ... , Martin E.A., Miller A.C. (2023) PLOS Genetics. doi: doi.org/10.1371/journal.pgen.1011045 BioRxiv, doi: 10.1101/2022.06.27.497867

Neurobeachin controls the asymmetric subcellular distribution of electrical synapse proteins.
Martin, E.A.#, Michel J.C., Kissinger J.S., Echeverry F.A., Lin Y.P., O’Brien J., Pereda A.E., Miller A.C..# (2023) Current Biology, 33(10). doi: 10.1016/j.cub.2023.04.049

Electrical synaptic transmission requires a postsynaptic scaffolding protein.
Lasseigne A.M.*, Echeverry F.A.*, Ijaz s.*, Michel J.C.*, Martin E.A., Marsh A.J., Trujillo E., Marsden K.C., Pereda A.E.#, Miller A.C.# (2021). eLife. doi: 10.7554/eLife.66898

Understanding the molecular and cell biological mechanisms of electrical synapse formation.
Martin E. A.
*#, Lasseigne A. M.*, Miller A. C.# (2020). Frontiers in Neuroanatomy14. doi: 10.3389/fnana.2020.00012

* denotes equal contribution

# denotes corresponding author

Chemical synapse form and function

Kirrel3-mediated synapse formation is attenuated by disease-associated missense variants.
Taylor, M. R.*, Martin, E. A.*, Sinnen, B., Trilokekar, R., Ranza, E., Antonarakis, S. E., & Williams, M. E. (2020) Journal of Neuroscience, 40 (28) 5376-5388; doi: 10.1523/JNEUROSCI.3058-19.2020

Heterophilic Type II cadherins are required for high-magnitude synaptic potentiation in the hippocampus.
Basu, R., Duan, X., Taylor, M. R., Martin, E. A., Muralidhar, S., Wang, Y., … Williams, M. E. (2017). Neuron96(1). doi: 10.1016/j.neuron.2017.09.009

Examining hippocampal mossy fiber synapses by 3D electron microscopy in wildtype and Kirrel3 knockout mice.
Martin, E. A., Woodruff, D., Rawson, R. L., & Williams, M. E. (2017). Eneuro4(3). doi: 10.1523/eneuro.0088-17.2017

Mechanisms of input and output synaptic specificity: finding partners, building synapses, and finetuning communication.
Rawson, R. L., Martin, E. A., & Williams, M. E. (2017). Current Opinion in Neurobiology45, 39–44. doi: 10.1016/j.conb.2017.03.006

The intellectual disability gene Kirrel3 regulates target-specific mossy fiber synapse development in the hippocampus.
Martin, E. A.*
, Muralidhar, S.*, Wang, Z., Cervantes, D. C., Basu, R., Taylor, M. R., … Williams, M. E. (2015). ELife4. doi: 10.7554/elife.09395

* denotes equal contribution

 Methods

 Trichloroacetic Acid Fixation and Antibody Staining of Zebrafish Larvae.
Martin, E. A.*, Ijaz, S.*, Pereda, A. E. and Miller, A. C. Bio-protocol 12(2): e4289. (2022) doi: 10.21769/BioProtoc.4289

* denotes equal contribution